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Propagation of desynchronous disturbances in synchronized chaotic one-way coupled map lattic
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Propagations of desynchronous perturbations in synchronization processes of spatiotemporal chaos are in-
vestigated by considering chaotic one-way coupled map lattices. Under large coupling approximation the
desynchronous area in time space is analytically calculated, based on the concepts of comoving Lyapunov
exponent and absolute largest Lyapunov exponent. The ideas used in this paper are expected to be applicable
to synchronizations of spatiotemporally chaotic systems of coupled maps and coupled oscillators with convec-
tive instability.
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In the recent decade, investigations of dynamic beha
and control and synchronization of spatiotemporal ch
have attracted much attention due to both theoretical inte
and hopeful anticipation of wide applications; see Re
@1–12# for recent review. For practical spatiotemporal cha
control and synchronization, we hope to use a small num
of control signals to control and synchronize systems w
large space, or say, with many positive Lyapunov expone
~LEs!. It is particularly desirable if we can reach so hig
control efficiency that a single injected time sequence
successfully control and synchronize spatiotemporal ch
with arbitrarily large space length and arbitrarily large d
mensionality. In doing so, an effective and undamped pro
gation of control~synchronization! signal in space become
the key point. It is now well understood that spatiotempo
systems with large gradient couplings~or say, with strongly
asymmetrical couplings in coupled map lattices! can effec-
tively propagate control signals and can be used as i
systems for spatiotemporal chaos control and synchron
tion @13–16#. One-way coupled chaotic map lattices belo
to typical systems of this kind@14,17–19#.

It is also known that some spatial systems with stro
gradient coupling may show convective instability under
absolute stability condition. This convective instability is t
key reason for the effective propagation of control sign
@20–22#. On the other hand, with convective instability, an
out-control~desynchronization! disturbances may be consid
erably amplified, and widely spread and easily propaga
along the direction of the gradient coupling. This amplific
tion and propagation of disturbances may cause serious p
lems for the applicability of various control methods. F
instance, when we perform secure communication by s
chronizing spatiotemporal chaos@23,24#, the disturbance
propagation is closely related to the so-called avalanche
fect of data errors~i.e., a single data error in the input sign
may cause errors of huge output data!. Thus, a comprehen
sive theoretical understanding on the disturbance prop
tion problem in controlled spatiotemporal systems is of c
cial importance for practical applications of chaos cont
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and synchronization. To our knowledge, this problem has
yet been thoroughly studied, and it is the central task of
present paper.

In this paper we focus on propagations of desynchron
perturbations in spatiotemporal chaos synchronization p
cesses. We take chaotic one-way coupled map lattices as
model, and the ideas are expected to be applicable to w
range of spatiotemporal systems with convective instabi
and absolute stability. We start with the following drivin
system, a one-way coupled ring map lattice@see Fig. 1~a! for
the schematic diagram#,

xn11~ i !5~12«! f @xn~ i !#1« f @xn~ i 21!#, ~1!

i 51,2, . . . ,L, xn~0!5xn~L !. ~2!

Without losing any generality we use the fully develop
chaotic logistic function for the map

f ~x!54x~12x!. ~3!

With the ring structure of Fig. 1~a!, the system is spatiotem
poral chaos with very high dimensionality forL@1 and for
most of choices of coupling« ~except some periodic win
dows!. From Eq. ~2! we output a driving signalxn(0)
5xn(L), and use this signal to drive a one-way coupled op
map lattice~OCOML! @Fig. 1~b!#

FIG. 1. The schematic diagram of the model.~a! One-way
coupled ring map lattice~OCRML!; ~b! one-way coupled open ma
lattice ~OCOML!.
©2004 The American Physical Society12-1
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yn11~ i !5~12«! f @yn~ i !#1« f @yn~ i 21!#,

i 51,2, . . . ,L, yn~0!5xn~0!. ~4!

For sufficiently large« ~e.g.,«>0.75), the trajectory of sys
tem ~4! can be fully synchronized to the trajectory of syste
~1! after certain transient period. In Fig. 2~a! we plot differ-
enceDn( i )5uyn( i )2xn( i )u from arbitrary initial conditions
of x0( i ) and y0( i ) for «50.8. In Fig. 2, synchronization is
assumed wheneverDn( i )<r 510210, and desynchronization
is identified otherwise. It is remarkable that with a sing
driving sequenceyn(0)5xn(0) only, all the sites of system
~4! can be exactly synchronized to the corresponding site
system~1! eventually no matter how large the system s
(L@1) is and how turbulent system~1! is @note, with L
@1, system~1! is spatiotemporal chaos with a huge numb
of positive LEs#.

Nevertheless, the above desirable advantage also ca
an undesirable problem, i.e., the synchronization of Eq.~4!
becomes sensitive to small perturbation of the driving, a
can be largely~though temporarily! disturbed by any data
error in the input. We set a small data erroruy0(0)2x0(0)u
5d0 with d0510210 at time n50 under the condition of
existing full synchronization between Eqs.~4! and ~1!. This
small error at a single site and a single time can develo
large desynchronization wave as shown in Fig. 2~b!. The
desynchronous wave has the following characteristics. F
the wave moves from smalli to large i ~from upstream to
downstream!, and the desynchronous error is amplified as
wave moves. This indicates a convective~moving! instabil-
ity. Second, if we focus on a given site@sayyn( i ) with fixed

FIG. 2. «50.8. Distributions of synchronization~denoted by S!
and desynchronization~black area! regions. Synchronization is as
sumed ifDn( i )5uyn( i )2xn( i )u<r 510210. ~a! With a single driv-
ing sequenceyn(0)5x0(0) only, system~4! fast synchronizes with
system~1!. ~b! Supposing systems~4! and ~1! are synchronized a
n,0, and then setting small data errord0510210 on the driving of
the first site atn50 as Eq.~8!, synchronization between system
~4! and~1! is broken temporarily~black area!, and recovered again
after a certain time~the upper S area!. ~c! Lines B and D are the
lower and upper boundaries of the desynchronous area in~b!, re-
spectively; lineC is the time position when the desynchronous v
ues of various sites,dn( i ), reach their maximum over the iteratio
numbers~each plot is obtained by averaging data of 1000 runs!.
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i ], the desynchronous elementuyn( i )2xn( i )u increases for
small n, and reaches a maximum value at a certain timenc ,
and then decreases forn.nc . The desynchronization at an
site must eventually die away, and synchronization must
recovered for sufficiently large timen. Thus, the synchroni-
zation state of Eq.~4! is absolutely stable. In Fig. 2~c! we
plot spatiotemporal behaviors of desynchronous eleme
Dn( i )5uyn( i )2xn( i )u («50.80). There are three lines: line
B andD indicate the lower and upper boundaries of des
chronous region, respectively; lineC indicates thatDn( i )
reach their maximum values at timenc( i ). We are interested
in the propagation of desynchronization wave developme
i.e., we are interested in the black region of Fig. 2~b!. In
particular, we will compute the slope of the upper bounda
and the height of the right edge of the black area. The la
is nothing but the size of the error avalanche in the out
from siteN (N can be chosen freely! caused by a single dat
error ati 50,n50, and this quantity is of great significanc
for the chaos-based secure communications.

In order to explain the disturbance area of Fig. 2~b!, it is
important to compute the perturbation propagation and a
plification. A quantity of comoving LE can be suitably use
for this purpose. In our case the finite time comoving LE c
be defined between two sitesi and j . i , as

m~ i , j ,v !5 ln@BnvAi # j /nv , ~5!

whereB is the Jacobi of coupled map lattice~4!, andAi is a
vector of which all the elements are equal to zero except
i th element which takes value equal to 1. The subscripj
means to take thej th element from the vectorBnvAi . More-
over, the iteration timenv is defined on the basis of velocit
as

v5~ j 2 i !/nv . ~6!

The finite time comoving LE of velocityv defines the
average exponential rate of perturbation amplification fr
site i ~we will fix i 50 afterwards! over spacej 2 i with
velocity v @i.e., in time periodnv5( j 2 i )/v]. From Eq.~5!,
the finite comoving LE depends oni , j , and v. However,
due to the symmetry structure of the OCOML syste
m( i , j ,v) depends onj 2 i andv only in our case, andm is
actually sensitive only tov. In Fig. 3~a!, we fix «50.8 and
plot m vs v for various (j 2 i )’s. It is remarkable thatm-v
curves are insensitive to (j 2 i )’s indeed. From Fig. 3~a!, for
sufficiently largej 2 i the finite time comoving LE~5! can be
represented, the true~infinite time! comoving LE m(v)
5 lim

j 2 i→`
m( i , j ,v) in good approximation. In the following

we will simply usem(v) to denotem( i , j ,v) in our further
discussions.m varies withv ~obviously,v<1), andm takes
the maximum valuemM at a certain velocityvM . By adjust-
ing coupling intensity«, bothmM andvM can be changed. In
Fig. 3~b! we plot mM against«. In the two regimes of the
figure with minimum mM (0.17,«,0.19 and 0.81,«
,0.83), periodic windows are observed. Note that even
stable periodic windows the largest comoving LE is s
large than zero. This is possible only for convectively u
stable and absolutely stable states.
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Another quantity relevant to computing perturbatio
propagation area is the largest absolute LEl of the response
OCOML system, which can be calculated easily from Eq.~4!
as

l i~n!5 ln@BnAi # i /n, ~7a!

l5 lim
n→`

l i~n!. ~7b!

Note that while the finite time LEl i(n) depends on bothi
and n in Eq. ~7a!, l is independent ofi in Eq. ~7b!, i.e., a
samel can be obtained for differenti ’s. In Fig. 3~c! we plot
l i(n) vs n with «50.8. l i(n) approaches a finite negativ
value quickly asn increases and in Fig. 3~c! l i'l for suf-
ficiently large n. In Fig. 3~d! we plot l by varying «. l
monotonously decreases as« increases to 1~apart from the«
region of periodic window near«'0.82).

With both well-defined quantitiesm(v) andl we can now
calculate the black area of Fig. 2~b! explicit under certain
approximation condition, namely, we can theoretically p
dict the upper boundary of the black region in Fig. 2~b!.
Suppose we have a small desynchronous perturbationi
50,n50,

uy0~ i !2x0~ i !u5d0 . ~8!

We assume that thei th site of Eq.~4! is desynchronized from
the i th site ~1! at timen if

uyn~ i !2xn~ i !u>r , r<d0 ~9!

FIG. 3. «50.8. ~a! Finite time comoving LEm( i , j ,v) vs veloc-
ity v for different (j 2 i )’s. Each plot represents the results of t
average of 100 runs. The overlap of curves for different (j 2 i )’s
indicates that these finite comoving LEs can well approximate
asymptotic comoving LEm(v)5 lim

j 2 i→`
m( i , j ,v). ~b! Maximum

value mM varies with «. Two minimum parts of the curve (0.1
,«,0.19, 0.81,«,0.83) correspond to periodic windows of th
parameter.~c! the finite time largest absolute LEl(n) vs the num-
ber of iterations.~d! The largest absolute LEl vs «. l monoto-
nously decreases as« increases to 1~apart from the« regions of
periodic windows!.
03621
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~we will fix r 5d0510210 throughout the paper!. Now we
try to locate the (i ,n) region of desynchronization. Since th
perturbation can be amplified most with the largest comov
LE mM if the frame moves with velocityvM , the i th site
undergoes the largest desynchronization at timen5 i /vM ,

dn5 i /vM
~ i !'d0eimM /vM. ~10!

After time n5 i /vM , dn( i ) damps with the rate determine
by the largest absolute LEl and the interaction from the sit
i 21. If « is big ~i.e., 12 «!1), the interaction from the site
i 21 shrinks rapidly, we can thus neglect it, and appro
mately predict the damping ofdn( i ) as

dn~ i !}d0eimM /vMel[n2( i /vM)] . ~11!

The desynchronous region is defined bydn( i )'r , and this
leads to

d0e( imM /vM)el[n2( i /vM)]'r ,

n5
i

vM
S l2mM

l D1~ ln r 2 ln d0!/l. ~12!

Since we setr 5d0, Eq. ~12! can be reduced to a simpl
formula

n~ i !5
i

vM
S l2mM

l D , ~13!

which specifies the upper boundary of Fig. 2~b!. The ava-
lanche sizeAN at the sitei 5N reads

AN5n~ i 5N!2N5
N

lvM
@l~12vM !2mM#. ~14!

It is significant that the desynchronous perturbation propa
tion behavior and the associated avalanche effect can be
plicitly predicted, based on three quantities, the largest
moving LE mM , its corresponding velocityvM , and the
largest absolute LEl.

Generally, the quantitiesmM , vM , andl have to be cal-
culated numerically. In case of 1@12«.0, these quantities
can be specified explicitly as

mM'l05 lim
n→`

1

n (
i 51

n

lnu f 8~xi !u5 ln 2, ~15!

with l0 being the LE of the single mapxn1154xn(1
2xn), and

vM'1, l' ln~12«!1l0 . ~16!

Inserting Eqs.~15! and~16! into Eqs.~13! and~14! we obtain

n~ i !'
i ln~12«!

ln~12«!1 ln 2
, AN'

2N ln 2

ln~12«!1 ln 2
. ~17!

e
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For verifying the validity of Eqs.~13! and~17! we present
Fig. 4. In Fig. 4~a! we plot the desynchronous region b
taking «50.99 and applying the theoretical prediction, Eq
~17! ~triangles! and by direct numerical simulations~circles!.

FIG. 4. ~a! The same as Figs. 2~b! and 2~c! with «50.99. The
region between the two S regions denotes the desynchroniz
area. The squares represent the low boundary of the desynchro
region. The triangles and circles represent the theoretical predic
of the upper boundary of the desynchronization area of Eq.~17! and
the corresponding numerical results, respectively. Both results
incide with each other satisfactorily.~b! The same as~a! with «
50.95. ~c! The same as~a! with «50.90 with the theoretical result
given by Eqs.~13! and~14!. Small deviations between the theore
ical and numerical results are observed, while qualitative agreem
is still identified.
t,

a

ev

.S
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Both results coincide practically with each other. In F
4~b!, we do the same as Fig. 4~a! with « reduced to«
50.95; the theoretical result, Eq.~17!, can still predict the
perturbation-disturbed desynchronous area satisfactorily
Fig. 4~c! we do the same as~a! by taking «50.90 and ap-
plying Eqs.~13! and ~14!; with this smaller«, some devia-
tions between the theoretical and numerical results can
clearly seen. However, approximate agreement can be
observed~note, this parameter value is not far from the p
riod window on 0.81.«.0.83). The approximation of Eqs
~13! becomes worse as« is further reduced due to the reaso
that Eq. ~11!, which neglects the interaction from the (i
21)th site in computing the quantitydn( i ) aftern. i /vM , is
no longer valid.

In conclusion we have investigated the propagation pr
lem of desynchronous perturbation by considering a one-w
coupled lattice model, and obtained analytical results for
desynchronous region and avalanche effect, based on
quantities of the largest comoving LE and the correspond
velocity, and the largest absolute LE. Numerical results w
confirm the theoretical analysis in relatively wide parame
region. Though the results have been obtained for a part
lar one-way coupled map lattice system, the formulas, E
~13! and~14!, are expected to be qualitatively valid for ge
eral systems of coupled chaotic maps and coupled cha
oscillators for large couplings with convective instability.

This project was supported by Natural Science Foun
tion of China under Grants Nos. 10335010 and 101750
and The Special Funds for Major State Basic Resea
Projects under Grant No. G2000077304.
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