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Propagation of desynchronous disturbances in synchronized chaotic one-way coupled map lattices
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Propagations of desynchronous perturbations in synchronization processes of spatiotemporal chaos are in-
vestigated by considering chaotic one-way coupled map lattices. Under large coupling approximation the
desynchronous area in time space is analytically calculated, based on the concepts of comoving Lyapunov
exponent and absolute largest Lyapunov exponent. The ideas used in this paper are expected to be applicable
to synchronizations of spatiotemporally chaotic systems of coupled maps and coupled oscillators with convec-
tive instability.
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In the recent decade, investigations of dynamic behavioand synchronization. To our knowledge, this problem has not
and control and synchronization of spatiotemporal chaoyet been thoroughly studied, and it is the central task of the
have attracted much attention due to both theoretical interegresent paper.
and hopeful anticipation of wide applications; see Refs. In this paper we focus on propagations of desynchronous
[1-12] for recent review. For practical spatiotemporal chaosPerturbations in spatiotemporal chaos synchronization pro-
control and synchronization, we hope to use a small numbegesses. We take chaotic one-way coupled map lattices as our
of control signals to control and synchronize systems witiodel, and the ideas are expected to be applicable to wide
large space, or say, with many positive Lyapunov exponent§2Nge of spatlotem_poral systems wlth convective mst_ak_)lllty
(LEs). It is particularly desirable if we can reach so high and absolute stability. We start with the following driving

control efficiency that a single injected time sequence cafystem, a one-way coupled ring map lattisee Fig. 1) for

successfully control and synchronize spatiotemporal chao@e schematic diagrajn

with arbitrarily large space length and arbitrarily large di-
mensionality. In doing so, an effective and undamped propa-
gation of control(synchronizationsignal in space becomes )
the key point. It is now well understood that spatiotemporal i=12,... L, Xp(0)=xp(L). )
systems with large gradient coupling® say, with strongly . ) )

asymmetrical couplings in coupled map latticean effec- Wlthoiut Ios_,lng any generallty we use the fully developed
tively propagate control signals and can be used as ideghaotic logistic function for the map

systems for spatiotemporal chaos control and synchroniza-

tion [13—16. One-way coupled chaotic map lattices belong f(x)=4x(1—x). ©)

to typical systems of this kinfil4,17-19. . . ' ' .

It is also known that some spatial systems with strongWVith the ring structure of Fig. (&), the system is spatiotem-
gradient coupling may show convective instability under thePoral chaos with very high dimensionality fae-1 and for
absolute stability condition. This convective instability is the MOSt of choices of coupling (except some periodic win-
key reason for the effective propagation of control signaldoWs. From Eq.(2) we output a driving signak,(0)
[20—22. On the other hand, with convective instability, any =xn(L),_and use this 3|gnal to drive a one-way coupled open
out-control(desynchronizationdisturbances may be consid- map lattice(OCOML) [Fig. 1(b)]
erably amplified, and widely spread and easily propagated
along the direction of the gradient coupling. This amplifica- | ®
tion and propagation of disturbances may cause serious prol
lems for the applicability of various control methods. For
instance, when we perform secure communication by syn{ O>0>0>0>0>-->0>0>0>0>0
chronizing spatiotemporal chad®3,24], the disturbance
propagation is closely related to the so-called avalanche ef] S
fect of data errorsgi.e., a single data error in the input signal
may cause errors of huge output daféhus, a comprehen-
sive theoretical understanding on the disturbance propaga- FIG. 1. The schematic diagram of the modé&) One-way
tion problem in controlled spatiotemporal systems is of cru-coupled ring map lattic€OCRML); (b) one-way coupled open map
cial importance for practical applications of chaos controllattice (OCOML).

Xn+1(1)=(1—e)f[xn(i)]+ef[x,(1—1)], ()

S &
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100 i], the desynchronous elemept,(i)—x,(i)| increases for
smalln, and reaches a maximum value at a certain tirpe
and then decreases for>n.. The desynchronization at any
site must eventually die away, and synchronization must be

s recovered for sufficiently large time Thus, the synchroni-

=5 7 zation state of Eq(4) is absolutely stable. In Fig.(® we

i . plot spatiotemporal behaviors of desynchronous elements

100 = An()=1]yn(i) —x,(i)| (¢=0.80). There are three lines: lines

- B and D indicate the lower and upper boundaries of desyn-

chronous region, respectively; lin€ indicates thatA, (i)

reach their maximum values at timmg(i). We are interested

in the propagation of desynchronization wave development,

i.e., we are interested in the black region of Figb)2 In

i particular, we will compute the slope of the upper boundary
FIG. 2. £=0.8. Distributions of synchronizatiof@enoted by $ f”md th? height of thg right edge of the black area. The latter
and desynchronizatiotblack arearegions. Synchronization is as- IS nothlng but the size of the error avalanche n the output
sumed ifA (i) = |y, (i) —x,(i)|<r = 10°. (a) With a single driv- from sngN (N can be chqsen fre@ly:gused by a s'mg.lt'a data
ing sequency, (0)=xo(0) only, system(4) fast synchronizes with €TOr ati =0,n=0, and this quantity is of great significance
system(1). (b) Supposing system}) and (1) are synchronized at O the chaos-based secure communications.

n<0, and then setting small data eridy=10"1° on the driving of In order to explain the disturbance area of Figo)?it is

the first site an=0 as Eq.(8), synchronization between systems important to compute the perturbation propagation and am-

(4) and (1) is broken temporarilyblack ares and recovered again Pplification. A quantity of comoving LE can be suitably used

after a certain timethe upper S aréa(c) Lines B andD are the  for this purpose. In our case the finite time comoving LE can

lower and upper boundaries of the desynchronous aréb)jire-  be defined between two siteandj>i, as

spectively; lineC is the time position when the desynchronous val-

ues of various sites, (i), reach their maximum over the iteration w(i,j,v)=In[B"™A];/n,, 5

numbers(each plot is obtained by averaging data of 1000 yuns

(a)
S

c 504

whereB is the Jacobi of coupled map latti¢é), andA,; is a
vector of which all the elements are equal to zero except the
ith element which takes value equal to 1. The subsgript
means to take thgth element from the vectd"™ A, . More-

Yn+1(i)=(1=&)flyn(i)]+eflyn(i—1)],

i=1,2,... L, yn(0)=x,(0). ) over, the iteration tima, is defined on the basis of velocity
For sufficiently larges (e.g.,e=0.75), the trajectory of sys- as
tem (4) can be fully synchronized to the trajectory of system v=(j—i)/n,. (6)
(1) after certain transient period. In Fig(a® we plot differ- Y
enceA(i)=|yn(i) —Xy(i)| from arbitrary initial conditions The finite time comoving LE of velocity defines the

of Xo(i) andyy(i) for e=0.8. In Fig. 2, synchronization is average exponential rate of perturbation amplification from

assumed whenever,(i)<r=10 9 and desynchronization site i (we will fix i=0 afterwards over spacej—i with

is identified otherwise. It is remarkable that with a singlevelocity v [i.e., in time periodh, = (j—i)/v]. From Eq.(5),

driving sequenceg/,(0)=x,(0) only, all the sites of system the finite comoving LE depends dn j, andv. However,

(4) can be exactly synchronized to the corresponding sites alue to the symmetry structure of the OCOML system,

system(1) eventually no matter how large the system sizey(i,j,v) depends orfj—i anduv only in our case, ang. is

(L>1) is and how turbulent systerfl) is [note, withL  actually sensitive only te. In Fig. a), we fix ¢=0.8 and

>1, system(1) is spatiotemporal chaos with a huge numberplot x vs v for various (—i)’s. It is remarkable thaj-v

of positive LES. curves are insensitive tg € i)’s indeed. From Fig. @), for
Nevertheless, the above desirable advantage also causgficiently largej —i the finite time comoving LE5) can be

an undesirable problem, i.e., the synchronization of @Y. represented, the truénfinite time) comoving LE u(v)
becomes sensitive to small perturbation of the driving, and= " |im (i,j,v) in good approximation. In the following

can be largely(though temporarily disturbed by any data  j-i—=

error in the input. We set a small data erfgg(0)—x(0)| we will simply useu(v) to denotew(i,j,v) in our further
=6, with 5,=10"1° at time n=0 under the condition of discussionsu varies withv (obviously,v<1), andu takes
existing full synchronization between Edq4) and(1). This  the maximum valuge,, at a certain velocity, . By adjust-
small error at a single site and a single time can develop &g coupling intensity, bothu,, andvy can be changed. In
large desynchronization wave as shown in Fi¢h)2The Fig. 3b) we plot u), againste. In the two regimes of the
desynchronous wave has the following characteristics. Firsfigure with minimum ), (0.17<e<0.19 and 0.8%¢
the wave moves from smailto largei (from upstream to <0.83), periodic windows are observed. Note that even in
downstrean and the desynchronous error is amplified as thestable periodic windows the largest comoving LE is still
wave moves. This indicates a convectiveoving instabil-  large than zero. This is possible only for convectively un-
ity. Second, if we focus on a given siteayy,(i) with fixed  stable and absolutely stable states.
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(we will fix r=8,=10 10 throughout the papgrNow we

0.6 . . . . .
05 (b)\\ try to locate the i(;n) region of desynchronization. Since the
= 120'4 ‘\ perturbation can be amplified most with the largest comoving
sl | / LE uy, if the frame moves with velocity,,, theith site
0s VT undergoes the largest desynchronization at tirad /v ,
0.0 02 04 06 08 1.0 X . . . X . H i
, v 0.0 0.2 04306 0.8 1.0 5n:i/uM(|)%5oe|'uM/UM' (10)
-1.14
4a6] |© ° \(Q\ ~ After time n=i/vy, 6,(i) damps with the rate determined
g 118 . ! A by the largest absolute LE and the interaction from the site
= 122 2 i—1.Ifeisbig(i.e., 1- £<1), the interaction from the site
-1.24] |, N i—1 shrinks rapidly, we can thus neglect it, and approxi-
o) 4 mately predict the damping af,(i) as
0 200 400 600 800 1000 04 05 0.6 0.7 0.8 0.9 1.0
" ¢ 8,(i) o 5o MM lomehn=(ifo)] (11)

FIG. 3. £=0.8. (a) Finite time comoving LEw(i,j,v) vs veloc-
ity v for different (j—i)’s. Each plot represents the results of the The desynchronous region is defined &yi)~r, and this
average of 100 runs. The overlap of curves for differgnti()’s leads to
indicates that these finite comoving LEs can well approximate the

asymptotic comoving LEu(v)= lim u(i,j,v). (b) Maximum 50e(i"M/”M)e"[”_(””M)]wr,
jmi—e
value py varies withe. Two minimum parts of the curve (0.17 i In—
<e<0.19, O.81<sl<.0.8.3) correspond to periodic windows of the n= _( Hwm +(Inr—=In 8y)/X. (12)
parameter(c) the finite time largest absolute LE(n) vs the num- Um A

ber of iterations.(d) The largest absolute LE vs . A monoto- ) )
nously decreases asincreases to lapart from thes regions of ~ Since we setr =4y, Eq. (12) can be reduced to a simple

periodic windows. formula
Another quantity relevant to computing perturbation- n(i)= — A—pm (19
propagation area is the largest absoluteN_&f the response Um A '
OCOML system, which can be calculated easily from &q.
as which specifies the upper boundary of FigbR The ava-
lanche sizeAy at the sitei =N reads
Ni(n)=In[B"A;];/n, (7a)
N
Ay=n(i=N)—N=—[N(1- - . 14
A= lim \i(n). (7h) n=N(i=N) )\UM[ (I-vm)—pml. (19

n—oo
It is significant that the desynchronous perturbation propaga-
Note that while the finite time LE;(n) depends on both  tion behavior and the associated avalanche effect can be ex-
andn in Eq. (7a), \ is independent of in Eq. (7b), i.e., a  plicitly predicted, based on three quantities, the largest co-
same\ can be obtained for differemts. In Fig. 3c) we plot  moving LE uy, its corresponding velocityy , and the
Ni(n) vs n with £e=0.8. \;(n) approaches a finite negative largest absolute LK.
value quickly asn increases and in Fig.( \;~N\ for suf- Generally, the quantitieg,,, vy, and\ have to be cal-
ficiently largen. In Fig. 3d) we plot A by varyinge. X culated numerically. In case o811—¢>0, these quantities
monotonously decreasesaincreases to lapart fromthes  can be specified explicitly as
region of periodic window neat~0.82).
With both well-defined quantitieg(v) and\ we can now 1 )

calculate the black area of Fig(l#} explicit under certain um=No= lim n ;1 Injf’(x)|=In2,
approximation condition, namely, we can theoretically pre- e
dict the upper boundary of the black region in Figb)2
Suppose we have a small desynchronous perturbation at
=0,n=0,

n

(15

with Ny being the LE of the single map,,;=4x,(1
—X,), and

[Yo(i) =Xo(i)|= 8. t3) vm=1 A=In(l-g)+no. (16)

We assume that thigh site of Eq.(4) is desynchronized from nserting Egs(15) and(16) into Egs.(13) and(14) we obtain
theith site (1) at timen if

) in(1—e) A —NIn2 1

lyn(i)=xa(D)|[=r, r<&, C) ”(')“|n(1—s)+|n2’ NTIn(l—e)+In2° (17
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60 60 Both results coincide practically with each other. In Fig.
@ U ﬁxf 4(b), we do the same as Fig.(a with ¢ reduced toe
- w‘”ﬁ - =0.95; the theoretical result, E¢L7), can still predict the

<%0 fﬁwn‘“ﬁ - =80 ﬂ:’i“"” perturbation-disturbed desynchronous area satisfactorily. In
M@fs“‘ s Ifﬁw s Fig. 4(c) we do the same a®) by takinge=0.90 and ap-

' WM plying Egs.(13) and (14); with this smallere, some devia-
0 20 4 0 20 40 tions between the theoretical and numerical results can be
‘ clearly seen. However, approximate agreement can be still
observed(note, this parameter value is not far from the pe-
riod window on 0.8 &>0.83). The approximation of Eqgs.
(13) becomes worse asis further reduced due to the reason
that Eq. (11), which neglects the interaction from the (
—1)th site in computing the quantity,(i) aftern>i/vy,, is
no longer valid.
i In conclusion we have investigated the propagation prob-

FIG. 4. (a) The same as Figs(#® and Zc) with £=0.99. The lem of desynchronous perturbation by considering a one-way
region between the two S regions denotes the desynchronizatidiPupled lattice model, and obtained analytical results for the
area. The squares represent the low boundary of the desynchronod€Synchronous region and avalanche effect, based on the
region. The triangles and circles represent the theoretical predictioguantities of the largest comoving LE and the corresponding
of the upper boundary of the desynchronization area of E§.and  velocity, and the largest absolute LE. Numerical results well
the corresponding numerical results, respectively. Both results cceonfirm the theoretical analysis in relatively wide parameter
incide with each other satisfactorilyp) The same aga) with ¢ region. Though the results have been obtained for a particu-
=0.95.(c) The same a) with £ =0.90 with the theoretical results |ar one-way coupled map lattice system, the formulas, Egs.
given by Egs(13) and(14). Small deviations between the theoret- (13) and(14), are expected to be qualitatively valid for gen-
ical and numerical results are observed, while qualitative agreemeriral systems of coupled chaotic maps and coupled chaotic
is still identified. oscillators for large couplings with convective instability.

For verifying the validity of Eqs(13) and(17) we present This project was supported by Natural Science Founda-
Fig. 4. In Fig. 4a) we plot the desynchronous region by tion of China under Grants Nos. 10335010 and 10175010,
taking e =0.99 and applying the theoretical prediction, Eqs.and The Special Funds for Major State Basic Research
(17) (triangles and by direct numerical simulatiorsircles. Projects under Grant No. G2000077304.
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